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A B S T R A C T   

Coupled Hydrologic & Hydraulic (H&H) models have been widely applied for flood simulations, yet the modern 
H&H models suffer from one-way and weak coupling and particularly disregarded run-on infiltration, which 
could compromise the model accuracy. In this study, we assess the H&H model performance with and without re- 
infiltration process in extreme flooding events. Results highlight that the re-infiltration process should not be 
disregarded even in extreme flood simulations. Saturated hydraulic conductivity and antecedent soil moisture 
are found to be the prime contributors to such differences. For the Hurricane Harvey event, the model perfor
mance is verified against stream gauges and high water marks, from which the re-infiltration scheme increases 
the Nash Sutcliffe Efficiency score by 140% on average and reduces maximum depth differences by 17%. 
Meanwhile, the recent update of the CREST-iMAP model Version 1.1, which incorporates two-way coupling and 
re-infiltration scheme, is released for public access.   

1. Introduction 

Flooding, as a costly natural hazard, has been increasingly threat
ening human lives and economies (Gourley et al., 2017; Hirabayashi 
et al., 2013; Li et al., 2021a). In the United States, most billion-dollar 
natural hazards are tied to either local or regional flooding, making it 
the major cost to human society. Unfortunately, under a warmer climate 
with anthropogenic pressure, flood crises are likely to continue 
expanding, as the flood frequency accelerates and flood magnitude rises 
(Bates et al., 2021; Hirabayashi et al., 2013; Li et al., 2022a; Tabari, 
2020; Triet et al., 2020; Swain et al., 2020; Viero et al., 2019). To combat 
flood risks, researchers have been developing hydrologic/hydraulic 
models to deliver accurate and timely flood information for local com
munities and decision-makers (Gourley et al., 2017). In the United 
States, two pronounced flood forecasting systems – the NWM (National 
Water Model) (Cohen et al., 2018; Viterbo et al., 2020) and FLASH 
(Flooded Locations And Simulated Hydrographs Project) (Gourley et al., 
2017; Yussouf et al., 2020) – are capable of both simulating real-time 

floods and forecasting floods in a short range. 
These large-scale flood monitoring systems, although claimed to 

offer inundation maps and predictions, weaken their hydrodynamic 
simulation due to computational constraints. For instance, the NWM 
adopts the Height Above Nearest Drainage (HAND) method to produce 
flood inundation maps along the river channels by mapping discharge to 
stage via rating curves (Johnson et al., 2019). This conceptual method, 
however, overlooks the physics of floodwater propagation because of no 
flow dynamics being represented (Wing et al., 2017). Moreover, it 
cannot simulate the pluvial flood, which is a local effect caused by 
intense rainfall rates and does not normally occur along river channels 
(Bates et al., 2021). More recently, some emerging hydrodynamic 
models have been successfully deployed and evaluated at continental or 
global scales (Bates et al., 2021; Grimaldi et al., 2019; Sampson et al., 
2015; Wing et al., 2017; Yamazaki et al., 2011). These models simplify 
the full Shallow Water Equation (SWE) to speed up the flood simulation. 
Nevertheless, they normally do not represent the hydrologic process 
well, especially for the infiltration process, which is proven to be critical 
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in flood simulations (Li et al., 2021b; Ni et al., 2020). As such, a coupled 
physically-based hydrologic & hydraulic (H&H) model appears to be a 
better choice, which takes the complementary advantages for accurate 
flood modeling (Dullo et al., 2021; Felder et al., 2017; Kim et al., 2012; 
Nguyen et al., 2016; Pontes et al., 2017; Sebastian et al., 2021). Readers 
are referred to Teng et al. (2017) and Grimaldi et al. (2019) for a 
detailed review of coupled models. Most of such models, however, adopt 
one-way and weak coupling, meaning that there is no interplay between 
the hydrologic component and hydraulic component (Bravo et al., 
2012). They normally produce surface runoff outputs first to drive the 
hydraulic model. The recent development of the Coupled Routing and 
Excess STorage inundation MApping and Prediction (CREST-iMAP) 
version 1.0 also uses this one-way coupling strategy (Chen et al., 2021; 
Li et al., 2021b). 

Two-way coupling for the H&H models has not hitherto been well- 
recognized. The accumulated surface water (hydraulic feature), along 
with excess surface runoff during a flood event in principle would alter 
infiltration rates, whereby both the flood magnitudes and timings could 
differ. Therefore, we activate the surface water infiltration along its way 
to downslope, which is called run-on infiltration or re-infiltration in 
short (Smith and Hebbert, 1979; Nahar et al., 2004; Zhang et al., 2020). 
Nahar et al. (2004) defined this re-infiltration as the infiltration of sur
face water that, as it moves downslope, encounters areas where moisture 
deficit has not yet been satisfied. It is often ignored in rainfall-runoff 
studies, while it can be significant when the random nature of infiltra
tion properties is taken into account (Corradini et al., 1998; Nahar et al., 
2004). Smith and Hebbert (1979) simulated the run-on process with 
varying saturated hydraulic conductivity and rainfall rates, and they 
reported that the effect of the run-on process is to decrease the ponding 
time dramatically. Corradini et al. (2002) compared models with and 
without re-infiltration, and they suggested that re-infiltration greatly 
reduces surface flow and alters both rising and recession limbs of the 
hydrograph. Nahar et al. (2004) emphasized the influence of 
re-infiltration in hillslope hydrograph using the Green-Ampt model with 
a 1D kinematic wave surface routing. A recent study by Zhang et al. 
(2020) takes it one step further, in which they applied the community 
model WRF-Hydro (Weather Research Forecasting model-Hydrological 
modeling system) to explore the influence of rainfall rates, topog
raphy, soil types on the re-infiltration process. However, none of these 
studies have considered the implication of re-infiltration to hydrody
namic studies, where the overland flow is driven by the 2D Shallow 
Water Equation (SWE) instead of 1D routing. To do so, we can obtain a 
more realistic view of how re-infiltration plays a role in flood 
simulations. 

During extreme flood events, the infiltration process is often dis
regarded because the infiltration rates are relatively low compared to 
excess rainfall rates. Yet, some studies claim that the infiltration process 
is critical to determine flood wave propagation, such as arrival and 
dissipation, especially in flat plain or regions with highly permeable soil 
media (Corradini et al., 2002; Mahapatra et al., 2020; Nahar et al., 2004; 
Li et al., 2021b; Woolhiser et al., 1996). A hydrodynamic model without 
infiltration is likely to overestimate flood depth (Kim et al., 2012; Li 
et al., 2021b; Ni et al., 2020). Nevertheless, it still remains unclear, or at 
least not as clear as infiltration, whether re-infiltration is essential for 
H&H models in extreme flood events. In other words, whether it is worth 
encapsulating such a scheme in modern flood simulation frameworks. 
To our knowledge, few studies have attempted to answer this question 
under the context of extreme flood events. Moreover, further questions 
can arise as to what the determining factors are during such a process 
and how it interacts with both flood magnitude and dynamics. In light 
of these questions, the objectives of this study are to explore 1) the 
effectiveness and importance of the re-infiltration scheme to an 
H&H model, 2) the contributing factors to the differences between 
with and without re-infiltration, and 3) whether and to what extent 
the re-infiltration process can help improve flood inundation 
mapping and prediction of extreme events. We first test its 

effectiveness and importance on a 100-year design extreme rainfall 
event during a sensitivity test and then apply it to a real case study – 
Hurricane Harvey – to validate the efficacy. It is anticipated to provide 
insightful information for model developers and researchers to under
stand the importance of the re-infiltration process to flood modeling. In 
this study, we also release our latest development of CREST-iMAP V1.1, 
which features a two-way coupling and re-infiltration scheme on top of 
the previous version (Chen et al., 2021; Li et al., 2021b). 

The rest of this paper is structured as follows. Section 2 introduces 
the study area and necessary datasets for the model setup, followed by 
experimental designs. Section 3 presents the results from the sensitivity 
test and the Hurricane Harvey event. Section 4 discusses limitations of 
this study as well as recommendations for input data and future model 
development. At last, Section 4 concludes the main findings of this 
study. 

2. Methods 

2.1. Forcing data 

Precipitation is the major driver of local or regional flooding, and it is 
thus central to acquire an accurate and high-resolution dataset. In the U. 
S., the Multi-Radar Multi-Sensor (MRMS) precipitation product, devel
oped at the National Severe Storms Laboratory (NSSL), provides 2-min 
and 1-km rainfall field, making it suitable for flash flood forecasting 
(Yussouf et al., 2016). It integrates ~180 WSR-88D operational radars, 
creating a seamless radar mosaic across the CONUS and southern Can
ada. Recent studies (e.g., Chen et al., 2020; Li et al., 2020) verified the 
efficacy of MRMS data when compared to gauge-based and 
satellite-based products during the Hurricane Harvey event. The 
advantage of using radar rainfall is obvious for flood inundation 
modeling, as conventional rain gauges cannot readily represent the 
spatially variable rainfall fields. The MRMS data was downloaded at 
https://mtarchive.geol.iastate.edu/. 

Besides precipitation data, potential evapotranspiration (PET) is a 
common input into a hydrologic system when the surface radiation is 
not resolved in the modeling process. In this real-case study, we obtain 
the PET data from the USGS FEWS data port (https://earlywarning.usgs. 
gov/fews) at daily temporal and 1◦ spatial resolution (Allen et al., 1998). 

2.2. Environmental data 

The modeling system requires inputs from the terrain, Land Use Land 
Cover (LULC), and soil type and depth. Among these variables, terrain 
data arguably plays the utmost important role in hydraulic simulation 
(Dullo et al., 2021; Schumann and Bates, 2018). There has been a 
thorough investigation of terrain data affecting flood inundation 
modeling since the early development of hydrologic/hydraulic models 
(Kenward et al., 2000; Sanders, 2007). Lately, with the increasing in
terest in deploying macro-scale flood inundation simulations, global 
terrain data assessment has been again brought up (Mohanty et al., 
2020; Sampson et al., 2015). Generally, three types of data are favored 
and available in the U.S.: 1) airborne light ranging and detection 
(LiDAR) that resolves terrain with a high degree of vertical accuracy 
(0.05–0.2 m) and comes with a high spatial resolution but limited areal 
coverage, 2) spaceborne radar interferometry (IfSAR, e.g., Shuttle Radar 
Terrain Mission) that provides global coverage but poor vertical accu
racy (~10 m) and spatial resolution (~90 m), and 3) a mixed product 
such as the National Elevation Dataset (NED) from the USGS that merges 
LiDAR surveys and the USGS quadrangle maps, whose accuracy (~5–7 
m) and resolution (~5/10/30 m) sit in between the former two prod
ucts. A general consensus from these studies is that LiDAR data is the 
most favorable DEM owing to improved vertical accuracy in flood 
modeling (Mohanty et al., 2020; Sanders, 2007; Schumann and Bates, 
2018) but they have to be accompanied by surveyed channel profile 
since channel depth is not reflected. IfSAR, however, degrades its quality 
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because of poor vegetation penetration and speckle noise while the NED 
smooths some artifacts. The NED 10 m data accurately represents the 
river channel morphology than high-resolution LiDAR data that cannot 
penetrate water surface. Therefore, in this study, we select the 10 m 
DEM data from the NED dataset in the study area. To confirm the river 
channel bathymetry, 13 surveyed river geometries from the Harris 
Country Flood Control are curated and compared to NED 10 m, shown in 
Table 1. The average difference is found to be small (~0.55 m). 

The LULC and impervious area data are acquired from the National 
Land Cover Database (NLCD) at 30 m resolution to derive a-priori 
parameter sets. The soil type dataset is retrieved from the United States 
Department of Agriculture. 

2.3. Study area 

Greens Bayou Basin, located in the north of the Houston metropol
itan region, is one of the areas that are susceptible to regional flooding 
because, firstly, landfalling tropical cyclones and hurricanes bring 
torrential rainfall within a short period; secondly, the urban develop
ment in the recent years have altered the local ecosystem (e.g., 
replacement of soil with built-up structures). The basin is relatively flat 
(~1.5%), with an average elevation of around 23.65 m, and the total 
drainage area is 457.9 km2. Three main streams flow across this region. 
Reinhardt Bayou (drainage area: 86.3 km2) flows from north to south, 
met with Greens Bayou to form the longest river in this area. Halls Bayou 
(drainage area: 225.1 km2), the second-longest river, meets Greens 
Bayou at the basin outlet (Fig. 1a). The five USGS stream gauges, situ
ated at each mainstream, monitor instantaneous streamflow at a 15-min 
time interval. Nearly 90% of the area is well-developed, especially in the 
western portion; forests and wetlands are present downstream, close to 
the basin outlet (Fig. 1b). The soil types are dominated by a mixture of 
sand, clay, and loam (Fig. 1c). The typical runoff generation mechanism 
in this region is infiltration excess runoff when extreme rain rates sur
pass soil infiltration capacity, indicated by relatively low hydraulic 
conductivity values (Buchanan et al., 2018). Meanwhile, the correlation 
between rainfall and streamflow is above 0.6, pointing to a flashy 
hydrograph (Berghuijs et al., 2016). 

During the 500-year Hurricane Harvey event, this region is largely 
inundated due to record-breaking 1600 mm rainfall over a one-week 
storm lifespan (Chen et al., 2020; Li et al., 2020). According to the 
Harris Country flood report, both Greens Bayou and Halls Bayou expe
rienced a 500-year water level downstream and 50-year to 100-year in 
between upstream. Greens Bayou broke previous water level records in 
2002 and observed flooding occurred along the entire channel. 

2.4. CREST-iMAP model 

Hydrologic modeling is thus far a common approach to deliver 
timely flood information for the sake of scalability and efficiency 
(Gourley et al., 2017). Yet, conventional hydrologic models bear large 

uncertainties in such developed regions, which is mainly due to 1) 
simplified representation of terrain (Dullo et al., 2021) and 2) 
one-dimensional routing that raises issues in flat regions (Flamig et al., 
2020; Getirana and Paiva, 2013; Li et al., 2021b). On the other hand, 
hydraulic models do not excel in representing hydrologic processes. In 
light of these issues, the newly developed Coupled Routing and Excess 
STorage inundation MApping and Prediction (CREST-iMAP) model is 
used to investigate the importance of the re-infiltration scheme in flood 
inundation models. The CREST-iMAP integrates CREST V2.1 for the 
hydrologic part that simulates vertical water distribution by land surface 
and ANUGA V2.1 for the hydraulic routing that distributes spatial water 
over terrain by solving 2D shallow water equation. Its performance has 
been evaluated in this region against the non-coupled hydrologic models 
and other popular coupled models – WRF-Hydro + HAND and LIS
FLOOD FP (Chen et al., 2021; Li et al., 2021b). CREST-iMAP achieves 
similar performance with LISFLOOD-FP, if not better, and generally 
outperform WRF-Hydro + HAND. However, the previous version of 
CREST-iMAP V1.0 does not include the re-infiltration scheme, meaning 
that surface running water is not allowed to re-enter the soil. Here, we 
release the CREST-iMAP V1.1, an upgrade version, which considers 
two-way coupling via exchanging surface water between the hydraulic 
and hydrologic module and re-infiltration. Two different schemes are 
illustrated schematically in Fig. 2, where the left panel represents the 
re-infiltration scheme, and the right does not. The CREST-iMAP V 1.0 
and V1.1 are openly accessible from https://github.com/chrimerss/C 
REST-iMAP. 

CREST-iMAP inherits the previous version of the CREST model, 
which simulates saturation excess runoff as the primary runoff genera
tion process (Wang et al., 2011; Xue et al., 2013; Flamig et al., 2020; Li 
et al., 2022a,b). The schematic model structure is depicted in Fig. 2. The 
study area is discretized in variable triangular meshes which allow 
higher density in river channels to resolve high-resolution river flow. 
Each modeling unit receives excess rainfall (rainfall minus evaporation) 
from forcing data. Then surface water is divided into overland flow and 
soil water according to the impervious area ratio through linear 
weighting. Overland flow is generated once soil water exceeds its 
holding capacity; otherwise, soil water is separated into the remaining 
amount and interflow based on the Variable Infiltration Curve (VIC) 
concept, as shown in Eq. (1). The VIC model is a widely recognized 
infiltration model that has been applied in several classic hydrologic 
models (Liang et al., 1994; Zhao, 1995). Overland flow, combined with 
the impervious area and saturation excess flow, is eventually fed into the 
2D shallow water equation solver – the Finite Volume Scheme. It solves 
water depth and momentum distributed at each grid cell and propagates 
across boundaries. The outputs of the model include water depth, ve
locity, discharge, and soil moisture at a desired time step. The flexibility 
of the unstructured mesh in CREST-iMAP allows dense meshes in regions 
that reflect high terrain variability (e.g., river channel) and sparse 
meshes in other regions (e.g., flood plain). This study simulates the 
extreme flood events at 10-m resolution using the embedded 

Table 1 
Digital Elevation Model and surveyed channel bottom elevation comparison.  

id lat lon gage (feet) gage (meter) NED_10m Difference (m) 

1650 29.965025 − 95.271954 52.82 16.099536 16.53 − 0.430464 
1630 29.933648 − 95.233574 31.61 9.634728 10.51 − 0.875272 
1680 29.861698 − 95.334883 39.21 11.951208 12.04 − 0.088792 
1690 29.892682 − 95.396717 59.72 18.202656 18.7 − 0.497344 
1675 29.849306 − 95.282843 18 5.4864 5.5 − 0.0136 
1620 29.837012 − 95.233773 − 2.12 − 0.646176 0.29 − 0.936176 
1685 29.849798 − 95.229007 0.51 0.155448 1.63 − 1.474552 
1640 29.91791 − 95.306565 35.39 10.786872 11.96 − 1.173128 
1600 29.891907 − 95.237623 17.03 5.190744 5.75 − 0.559256 
1670 29.948972 − 95.51941 99.2 30.23616 30.33 − 0.09384 
1160 29.973483 − 95.598483 101.14 30.827472 31.14 − 0.312528 
1660 29.956166 − 95.416142 64 19.5072 20.06 − 0.5528 
1655 29.972595 − 95.435011 76.91 23.442168 23.63 − 0.187832  
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unstructured mesh generator. 

i= imax ×
[
1 − (1 − A)

1
B

]
, (1)  

where i is the infiltration rates, imax is the maximum infiltration capacity, 
A is the fractional area of the curve, and B is the exponent of the VIC 
curve. 

There are five hydrologic parameters and one hydraulic parameter 
for the CREST-iMAP, which are listed in Table 2 along with parameter 
ranges. It is noteworthy that all these parameters are spatially distrib
uted to account for the spatial heterogeneity of land cover and soil types. 
The mean soil saturated hydraulic conductivity, Ksat f i = imax×[
1 − (1 − A)

1
B

]
, rom 0 to 20 mm/d, indicates the soil infiltration capa

bility. Higher Ksat values imply higher infiltration rates if soils are not 
saturated while reaching plateau for the saturated soils. The mean soil 
water capacity, WM from 10.4 to 365.4 mm, measures the total water 
content the soil can hold with lower value representing the impermeable 
soils. The exponent of the Variable Infiltration Curve (VIC), B, de
termines soil water partitioned to saturation excess runoff or interflow, 
with a higher B value corresponding to higher infiltration rates. KE is the 
ratio of the potential evapotranspiration to actual evapotranspiration, 
similar to the concept of pan coefficient. These soil-related a-priori pa
rameters can be approximated from a look-up table at an individual grid 
cell basis (Chow et al., 1988). There are also CONUS-wide optimized 
parameter sets that are configured for operational flood monitoring 
systems (Flamig et al., 2020). The impervious area ratio, IM from 0% to 
100%, is obtained directly from the NLCD dataset; the manning’s n 
coefficient is derived from the LULC via a look-up table. Both parameters 
determine water conveyance capacity, meaning that higher values relate 
to faster and larger flood peaks. The hydrologic parameters are config
ured at their optima based on previous study – a CONUS-wise calibrated 
parameters (Flamig et al., 2020) and shown in Fig. S1, but for the 

hydraulic parameter – manning coefficient, we manually adjusted it in a 
preceding event to ensure generating timely and accurate possible flood 
peaks. Specifically, we use 2017-08-20 to 2017-08-25 to calibrate the 
manning coefficient, as well as in-channel water stage. 

2.5. Experiment 

2.5.1. Synthetic experiment 
The importance of re-infiltration in principle is governed by (1) soil 

properties, (2) soil water saturation, and (3) excess rainfall rates. To 
quantify the relative importance and generalize our results, we decide to 
conduct a sensitivity test in this study area to mimic different environ
ment while preserving other variables. The sensitivity analysis addresses 
the following hypotheses: 1) discernible differences exist when switch
ing on and off re-infiltration scheme, 2) re-infiltration alters flood 
inundation magnitude and dynamics, 3) differences are amplified when 
increasing soil infiltration rates and drying antecedent soil saturation, 
and 4) differences increase with more frequent rainfall storms. Of five 
hydrologic parameters, we select two soil parameters (i.e., Ksat and B) 
that have a direct interaction with infiltration rates. Increase in Ksat and 
B promote re-infiltration amount. Additionally, the antecedent soil 
moisture (SM0) and roughness parameter (n), proven to be critical for 
flood generation (Li et al., 2021b; Yang et al., 2011), is another term to 
change infiltration dynamics. We applied a multiplier to each parameter 
of interest, ranging from 0.0 to 2.0 with 0.1 spacing except for SM0 that 
only ranges from 0.0 (completely dry) to 1.0 (fully saturated) with 0.1 
spacing. The initial values of parameters are found in Fig. S1. 

For the forcing data in this experiment, we consider a 100-year 
extreme in the study area by looking up the local Intensity-Duration- 
Frequency table. This determined rainfall rates are uniform across 2 h 
without spatial heterogeneity to eliminate the impact of rainfall spatial 
structure because we solely consider the impact by soils. We run the 
model for 24 h for each parameter, totaling 50 runs. 

Fig. 1. Maps of the (a) location of the study region, (b) digital elevation model, (c) soil type, and (d) land use land cover.  
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2.5.2. Real case – Hurricane Harvey 
Hurricane Harvey is one of the most destructive extreme weather 

events happened in this study area with substantial damaging winds and 
urban flooding. The storm was stalled over the Houston region for one 
week with continuous falling of extreme rains to develop pluvial and 
fluvial flooding, compounded by costal surges. According to the pre
cipitation estimates by gauges and radars, 1539 mm maximum rainfall 
was observed, and most locations in the study area recorded at least 760 
mm rainfall, making it the wettest tropical cyclone on record. As a result, 
almost 25–30 percent of Harris Country was submerged during this 
event, leading to at least $125 billion economic damage, the second 
largest natural disasters in US history. Many stream gauges malfunc
tioned (e.g., being flushed) during high flows. Owing to the 

socioeconomic impact, a variety of flood simulations were conducted in 
this region (Chen et al., 2021, 2022; Dullo et al., 2021; Li et al., 2021b; 
Sebastian et al., 2021). The simulation in our study is conducted from 
2017-08-26 to 2017-09-01, during which we did not vary model pa
rameters between scenarios with and without re-infiltration. The 
parameter values are optimized from a previous study (Li et al., 2021b). 
The initial soil moisture states are obtained from the operational FLASH 
project (flash.ou.edu/new). 

2.6. Computational metrics and results interpretation 

A set of computational metrics are selected for this study. The binary 
assessment comparing the scenarios with and without re-infiltration is 
considered with Positive Positives (PP), Positive Negatives (PN), and 
Negative Positives (NP). The first notion indicates whether the model 
results with re-infiltration detects floods, while the second for model 
results without re-infiltration scheme. The rationale behind this is that 
flood extent observations, e.g., witness reports, watermark, satellite- 
derived flood extent, and insurance claims, are still uncertain without 
ground truth (Bates, 2004; Chen et al., 2021, 2022). For flood magni
tude, the depth, area, and volume are calculated as a basin-integrated 
ratio. For flood dynamics, we inspect the initial inundation timings 
and total inundation duration that are often factored in flood risk as
sessments (Merz et al., 2010). The first six metrics listed in Table 3 are 
calculated at the maximum flood depth across the simulation period. In 

Fig. 2. Schematic illustration of the re-infiltration scheme.  

Table 2 
Parameters required in CREST-iMAP framework.  

Parameters description Range 

Ksat Soil saturated hydraulic conductivity (mm/d) 0–2827.2 
WM Mean soil water capacity (mm) 80–200 
B The exponent of the variable infiltration curve 0.05–1.5 
IM Impervious area ratio (%) 0–100 
KE The ratio of the PET to actual evapotranspiration 0.1–1.5 
SM0 Initial soil moisture 0–1 
Manning’s 

n 
The coefficient for the use of manning’s equation in 
channel flow 

0–1  
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the real case study, we verify the performance of two schemes against 
stream gauge measurements, which is so far the most conventional and 
trustworthy source. During the verification, the Nash-Sutcliffe Efficiency 
(NSE) and Correlation Coefficient (CC) are the primary evaluation scores 
with each indicating the best value of 1. The detailed formulas for 
calculating these variables are listed in Table 3, as well as their ranges. 

The RMSE can be further decomposed to reveal the systematic error 
and random error (Tang et al., 2020). First, we assume an additive error 
model by fitting a linear regression to our simulated stage to determine 
regression coefficients a and b. We assign the new variable as F. Then the 
residual is calculated by the difference of observed river stage O and 
fitted river stage F. 

F = a × S + b (2)  

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(S − F)22

√

(3)  

RMSER =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(F − O)

22

√

(4)  

, where S is denoted as the simulated river stage and O is the observed. 
In the results section, we present it in two parts: sensitivity analysis 

and real case study. The former includes basin-wise difference in an 
integral to reveal general differences regarding parameters (Section 
3.1.1) and storm intensity (Section 3.1.2). In the real case study, we 
focus on the efficacy of re-infiltration scheme by comparing to river 
stage observations (Section 3.2.1), and the High Water Marks surveyed 
in the aftermath of the event (Section 3.2.2). In Section 3.2.3, we 
investigate the importance of re-infiltration scheme in real case study by 
cross-comparing it to the synthetic results. 

3. Results 

3.1. Sensitivity analysis 

3.1.1. Parameter sensitivity 

3.1.1.1. Basin-average statistics. The overall flood-related differences 
between scenarios with and without re-infiltration are shown in Fig. 3, 
calculated as basin-integral change by averaging each metric over the 
whole grid cells that are wet (water depth larger than 0.01 m). First, the 
differences are discernible comparing the two, especially for the surface 
water volume ratio (RV), which varies from 0.7 to 1. It suggests the 
surface water with re-infiltration scheme could only account for 70% of 
the condition without re-infiltration. Previous studies agree that the re- 
infiltration results in a substantial reduction of river flow discharge, 
which can be translated to lower flood depth ratio (RH) (Nahar et al., 
2004; Woolhiser et al., 1996). For different conditions, the antecedent 
soil moisture, as expected, exhibits the largest impact on flood inunda
tion dynamics when comparing the two scenarios. Lower initial soil 
moisture leads to greater differences in flood depth ratio (RH), area ratio 
(RF), volume ratio (RV), and dynamics. For instance, when the initial soil 
is completely dry, the average flood depth ratio (RH), area ratio (RF), and 
volume ratio (RV) ratios of the re-infiltration scheme are 85%, 85%, 
67%, respectively. 

The initial inundation timing for re-infiltration delays around 0.5 h 
(Tinit=0.5), and the total inundation duration is 2.5 h shorter than the 
scenario without re-infiltration (D = 2.5). The total inundation duration 
is an important factor for flood risk management (Merz et al., 2010; Triet 
et al., 2020). As soil gradually approaches saturation, the differences 
diminish. Saturated hydraulic conductivity, Ksat, ranked as the second 
most sensitive parameter during the test, exponentially reduces flood 
depth/area/volume by 10%/7%/20% when its multiplier increasing 
from 0.0 to 2.0. Furthermore, the differences of inundation duration (D) 
range from 1.5 h to 3.5 h, making Ksat the most influential parameter; 
however, the initial inundation timing is relatively insensitive to it, as 
opposed to initial soil saturation condition. This is due to the fact that 
Ksat only changes infiltration flux along the way while exerting less 
impact on the initial inundation timings. For higher surface roughness 
(n), Flood area ratio (RF) and volume ratio (RV) decrease. It is expected 
because as water flows slowly, more water is accumulated above the 
surface, leaving higher potential to infiltrate. One exception is for the 
flood depth ratio (RH), which increases with roughness. It means dif
ferences in water depth are shrinking between two schemes for higher 
roughness. This implies that with increasing roughness, flood inunda
tion calculated with re-infiltration will result in more concentrated 
(higher local water depth) yet less widespread (lower inundation areas) 
flooding. The infiltration parameter B, however, has the least impact on 
the flood inundation dynamics among the three. These measures exhibit 
the greatest changes at small B multipliers (0.1–0.3) and then level out 
irrespective of increasing B multipliers. A plateau is reached because of 
the constrain of the maximum infiltration capacity. In summary, this 
sensitivity analysis tests our three main hypotheses, indicating the 
non-negligible differences between the two schemes and how the soil 
type and condition influence the results. 

3.1.1.2. Spatiotemporal relationships. To explore the spatiotemporal 
differences of scenarios with and without re-infiltration, we set three 
parameters to their default values, namely an initially dry soil condition 
and normal soil infiltration rates (i.e., a-priori setting). Fig. 4 shows the 
difference in flood extent for the two schemes. Despite a considerable 
amount of grid cells showing positive agreements (i.e., both detect 
floods; PP = 16.0%), there are still 1.7% of the grid cells issuing NPs, 
amounting to 15.6k grid cells (~1.56 km2) in this model configuration. 
Specifically, those NPs accumulate around upstream floodplains while 
the downstream such as areas near the basin outlet does not present 

Table 3 
Computational metrics used in this study.  

Metrics Formula Range 

Positive Positives (PP) ∑N
n=1(Bn = 1) ∩ (Sn = 1)

N
×

100% 

(0, 100) 
% 

Negative Positives (NP) ∑N
n=1(Bn = 1) ∩ (Sn = 0)

N
×

100% 

(0, 100) 
% 

Positive Negatives (PN) ∑N
n=1(Bn = 0) ∩ (Sn = 1)

N
×

100% 

(0, 100) 
% 

Flood area ratio (RF) RF =
Areas

Areab 

(0, 1) 

Mean water depth ratio (RH) 
RH =

∑n
i=1Hs,i

∑n
i=1Hb,i 

(0, 1) 

Surface water volume ratio (RV) 
RV =

∑n
i=1Hs,i × Areas

∑n
i=1Hb,i × Areab 

(0, 1) 

Initial inundation time differences 
(Tinit) 

Tinit = Ts − Tb (-T, +T) 

Inundation duration differences 
(D) 

D = Ds − Db (-T, +T) 

Nash- Sutcliffe Efficiency 
coefficient (NSE) 1 −

∑N
n=1(Sn − On)

2

∑N
n=1(Sn − O)

2 

(-inf, 1) 

Root Mean Square Error (RMSE) 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(Sn − On)

2

√
√
√
√

(0, inf) 

Correlation Coefficient (CC) 
∑n

i=1(oi − o)(si − s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(si − s)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(oi − o)2

√
(0, 1) 

Note: subscript s represents the simulation by turning on the re-infiltration 
scheme, and subscript b indicates the benchmark that turns off the re- 
infiltration scheme. T is the total simulation time and O denotes the observed 
river stage. 
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discernible differences, as the flood depth there due to accumulation is 
not sensitive to inundation thresholds for flooded cells. Moreover, Fig. 5 
portrays the spatial distribution of the differences with respect to 
maximum depth, initial inundation timings, and total inundation 
duration. Fig. 5a depicts the major differences that are situated in 
floodplains and river channels where surface water is accumulated via 
routing, and the maximum depth difference is up to 3 m in the river 
channel, especially downstream of Halls Bayou. However, the initial 
inundation timings and durations are scattered sparsely over the study 
area, with a majority of the grid cells showing earlier and longer in
undations for the case without re-infiltration scenario. Therefore, it is 
likely that the flood is over-predicted by models without the re- 
infiltration scenario. 

Meanwhile, we notice that there are some samples in the opposite 
distribution, indicating delayed and/or shorter inundation time (Fig. 5). 
Arguably, this could be some local effects when the soil reaches earlier 
saturation in the re-infiltration scenario, thereby leading to earlier 
flooding. A supporting material is found in Fig. 5d, in which the basin- 
average soil moistures of two schemes are compared. Notably, evapo
transpiration is not considered in this ideal test, so the soil moisture does 

not deplete with time. During the storm lifetime, soil moisture surges 
from completely dry to 85% saturation for the scenario without re- 
infiltration and to 95% saturation for scenario with re-infiltration. 
Early saturation reduces infiltration rates later on and thus has pro
nounced effects on local flooding when surface water is not routed 
timely. Fig. 5e presents the evolution of surface water volume by inte
grating surface water depth along with grid cells. Although both sce
narios concurrently reach the maximum surface water volume, their 
recession limbs show considerable differences. The re-infiltration sce
nario apparently has a steep exponential decay, as both still water and 
running water infiltrates into the soil; for the scenario without re- 
infiltration, in contrast, there is a mild decay and even levels out at 
the end of the simulation. The difference between the two increases with 
time, as shown in the shaded area, up to 0.4 × 108 m3 volume difference, 
which equates to almost half of the total surface water volume. 

In summary, re-infiltration scheme indeed influences flood magni
tude and timings via surface water-soil interaction, and it possibly re
duces flood magnitude and delays (shortens) flood timing (duration). 
Flood magnitude differences are pronounced downstream or in de
pressions, while flood timings are scattered. Such results are markedly 

Fig. 3. Plots of parameter sensitivity with metrics indicated in Table 3. RF: Flood area ratio; RH: Flood depth ratio; RV: Water volume ratio; Tinit: Flood timing 
differences; D: Flood duration differences. The no-difference point should be located at (1.0,1.0) for RF, RH, RV and (1.0,0.0) for Tinit and D. 

Fig. 4. Map of binary flood detection comparison. PP: Positive Positives; PN: Positive Negatives; NP: Negative Positives.  
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Fig. 5. Spatial distribution of differences of (a) maximum depth, (b) initial inundation timings, and (c) inundation durations along with respective sample distri
butions (red line represents the mean value of the distribution). Temporal evolution of (d) soil moisture (%) and (e) surface water volume. The difference of surface 
water volume in (e) is plotted in the shaded area. 
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tied to soil condition (wet or dry) and soil characteristics (infiltration 
capacity). 

3.1.2. Sensitivity to storm frequency 
For less intense storms yet more frequent, the impact of re- 

infiltration is expected to be larger than more intense storms, as rain
fall rates are less likely to exceed infiltration capacity. We looked up 1- 
year, 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year event 
rainfall from the NOAA Atlas 14 IDF curve and simulated those events 
collectively with default parameters. As shown in Fig. 6, three flood 
magnitude-related metrics (i.e., RF, RH, and RV) verify our speculation. 
For the 1-year storm specifically, flood areas with re-infiltration only 
account for 30% of that without re-infiltration. Likewise, flood depth 
and surface water volumes are reduced by 50% and 75%, respectively. 
However, there is no monotonic trend for flood timing. Floods are 
delayed for all storms, but the delayed time increases with return pe
riods prior to peaking at 0.83 h for 10-year storm, after which it de
creases. The flood duration differences again decrease with return 
periods. 

3.2. Case study: Hurricane Harvey 

The previous sensitivity test indicates that the re-infiltration scheme 
is not only physically sound, but it exerts considerable influences on 
model simulations. Although the CREST-iMAP tested under theoretical 
scenarios, it is relevant to compare one another in a real case study 
against observations during Hurricane Harvey. 

3.2.1. Verification against stream gauges 
Gauged water heights from five USGS stream gauges within the 

model domain are retrieved during model simulations at the 15-min 
interval. Surface water levels from two simulation schemes are extrac
ted at collocated stream gauge locations. It is worth mentioning that the 
terrain elevation imposes great uncertainties when comparing model 
simulations to observations, as the sub-grid variation cannot be resolved 
in the current settings. Despite the resolution mismatch, these gauge 
readings are still the most widely used source to verify the model 

performance. Table 4 shows the respective performance for with and 
without re-infiltration scenarios with respect to observations. The re- 
infiltration scheme greatly improves the NSE scores (+139.9%) and 
CC (+7.24%) while reducing RMSE (− 18.2%). Especially for the gauge 
08075900, there is more than a 400% increase in NSE score, jumping 
from 0.12 to 0.69. By breaking down the RMSE into systematic error 
RMSES and random error RMSER, we see the reduced errors are largely 
attributed to systematic error (− 31.2%), relative to the random error 
(− 13.1%). Thus, the systematic bias is much alleviated by considering 
the re-infiltration scheme. 

The reason for such a performance leap comes from better charac
terization of its flow recession limbs, as shown in Fig. 7. Both schemes 
are capable of simulating the peak water height values without delays, 
but water in the scenario without re-infiltration falls mildly in the 
recession stage, resulting in much higher water level than the observa
tions. On the other hand, flow for the re-infiltration scenario follows the 
gauge readings closely, especially after the first peak (from 2017-08-26 
to 2017-08-27). Apart from this best-performing gauge, the re- 
infiltration scheme improves capturing falling water across all the 
gauge stations, thereby leading to significant performance gains. 
Consistently, previous studies also highlighted that the re-infiltration 
markedly reduces recession limbs in the hydrograph (Nahar et al., 
2004). 

To be noted, water heights during flood recession period are both 
overestimated by two schemes, pointing to a systematic error in our 
CREST-iMAP framework. First, the model is calibrated to capture the 
peaking water height while ignoring the recession period. Second, sur
face runoff generated by the water balance model has been found to 
overestimate (Li et al., 2022b). Third, missing model physics such as 
subsurface exfiltration to channels and manmade structures complicate 
results interpretation. 

3.2.2. Verification against high water marks 
Because a direct assessment for flood inundation is not feasible, some 

watermarks or stains in the aftermath of a flood event can be used as 
proxy data for model evaluation although with great uncertainties. The 
USGS team routinely publishes their surveyed High Water Marks 

Fig. 6. Similar to Fig. 4, but for storms at different frequencies.  
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(HWMs) after some major flood events, which can subsequently be used 
for model evaluations (Chen et al., 2021; Li et al., 2021b; Sebastian 
et al., 2021; Wing et al., 2017). Fig. 8 shows the cell-wise maximum 
flood depth of the two schemes compared to the HWMs. Both schemes 
present better performance upstream of Halls Bayou, with a difference 
smaller than 0.5 m. However, the model over-predicts water depth in 
Greens Bayou up to 1.5 m. This is consistent with the over-prediction of 
in-channel water level, as shown in Fig. 7. The distribution of the dif
ferences is shown in Fig. 8c, pointing to a generally better performance 
of the re-infiltration scenario than without it, as the absolute mean depth 
difference of the re-infiltration (0.51 m) is 17.2% smaller than that of the 
scenario without re-infiltration (0.60 m). It is worth noting that HWMs 
themselves come with uncertainties that are due to the data quality, and 
errors could be up to 0.2 m (Koenig et al., 2016). For instance, tranquil 
water represents a smooth trend that has small uncertainties. There are 
also spurious errors that are related to human mistakes or values being 

rounded off. This is particularly true for the recorded geographical co
ordinates which requires more floating points to pin down the location 
exactly. In Fig. 8d and e, the two HWMs are marked with an absolute 
difference greater than 1 m but only several pixels away (i.e., tens of 
meters) from their true values. Despite this, the re-infiltration greatly 
alleviates the over-prediction of the previous model. 

3.2.3. Intercomparisons of flood magnitude and dynamics during Hurricane 
Harvey 

The intercomparison of flood magnitude and dynamics helps to un
derstand the effects of re-infiltration in a real 500-year event. Fig. 9, 
similar to Fig. 5, depicts the basin-integrated differences. For flood dy
namics, the initial inundation timing (Tinit) and total inundation dura
tion (D) could vary from − 2 (delayed) to 4 (earlier) hours and 0–15 h, 
respectively. For the temporal evolution of the Harvey event, it is 
featured by two subsequent events. The first event from 2017-08-26 to 

Table 4 
Model performance at stream gauge locations. The bolded values are the better ones from the off and on re-infiltration comparison. “Off” represents scenario without 
re-infiltration and “On” represents with re-infiltration scenario. NSE: Nash-Sutcliffe Coefficient; RMSE: Root Mean Squared Error; CC: Correlation Coefficient.  

Metrics\Gauges 08075900 08076000 08076180 08076500 08076700 

NSE Off 0.12 0.20 0.47 0.34 0.921 
On 0.69 0.44 0.52 0.66 0.919 
Improvement (%) +475 +120 +10.6 +94.1 +0.2 

RMSE (m) Off 1.89 2.24 1.85 1.61 1.14 
On 1.13 1.89 1.76 1.15 1.12 
Improvement (%) − 40.2 − 15.6 − 4.86 − 28.6 − 1.8 

RMSES (m) Off 1.64 1.39 0.44 1.02 0.96 
On 1.00 1.02 0.26 0.59 0.89 
Improvement (%) − 39.0 − 26.6 − 40.9 − 42.2 − 7.3 

RMSER (m) Off 0.94 1.77 1.80 1.25 0.61 
On 0.53 1.58 1.74 0.99 0.69 
Improvement (%) − 43.6 − 10.7 − 3.33 − 20.8 +13.1 

CC Off 0.88 0.71 0.70 0.77 0.99 
On 0.96 0.78 0.73 0.87 0.99 
Improvement (%) +9.09 +9.86 +4.29 +13.0 0  

Fig. 7. Simulated and observed time series of surface water level at five USGS stream gauges.  
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2017-08-27 saturates the soils immediately, during which the large 
differences of surface water volume and soil moisture are present be
tween the two schemes. The soil moisture content for the re-infiltration 
scheme is about 10% more than without the re-infiltration scheme; the 
surface water volume, however, is 40% less. The second event does not 
produce a large difference because of the saturated soils over the domain 
(Fig. 9d). As indicated by the sensitivity analysis, this effect is highly 
dependent on soil condition, soil types, and rainfall characteristics. The 
extreme rainfall from Harvey leaves less room for water to infiltrate, 
compared to other less intense events. It is therefore expected to have 
more pronounced improvements for less intense rainfall or other regions 
with high soil infiltration capacity. 

4. Discussion 

In this study, only local variations of four parameters – initial soil 
moisture, manning’s roughness, hydraulic conductivity, and the 

exponent of the VIC model – are tested independently. However, the 
interactions among these parameters are not explored herein. Global 
sensitivity analysis, such as the Morris method used in the previous 
study (Li et al., 2021b), can measure the variation of each parameter 
relative to other parameters, so it provides a clearer picture of the 
parameter interactions. Needless to say, initial soil saturation state is the 
dominant controller for the differences between the simulations with 
and without re-infiltration process. When the soils are fully saturated, 
the with and without re-infiltration scenarios are almost identical if 
other parameters are the same. Combined with our previous study that 
underlies the importance of infiltration and initial soil moisture for flood 
inundation modeling, we highly recommend taking into consideration 
the initial soil moisture state, as it has not been well-recognized in the 
hydraulic model community. This can be achieved via three ways: 1) 
warm up the model for a relatively long period prior to the simulation 
period (Chen et al., 2020); 2) parameterize the initial soil moisture and 
calibrate it, similar to the way we treat initial in-channel water depth 

Fig. 8. Maps of maximum surface water depth for (a) on re-infiltration and (b) off re-infiltration with differences against High Water Marks (HWMs). (c) histogram of 
water depth difference. Maps of two USGS high water marks (d) and (e), with the difference larger than 1 m between the simulation and recorded. 
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(Xue et al., 2013); 3) approximate it using observations or other model 
simulations, like what has been done in the real case study in Section 3.2 
(Flamig et al., 2020). The first approach is ideal because it eliminates 
uncertainties in parameterization (such as equifinality) or error propa
gation from observations/simulations to models; it is, however, the most 
computationally expensive approach for hydraulic modeling compared 
to the other two. Approach two and three are more pragmatic, while 

both inherit uncertainties or errors. We prefer the third approach if the 
data source is found to be trustworthy. For instance, in our case study, 
we used the simulated soil moisture product from the operational 
CREST/EF5 model which shares the same land surface processes as the 
CREST-iMAP. 

The results relating to different rainfall events are considered in this 
study (i.e., 1-year, 2-year, 5-year, 10-year, 25-year, 50-year, and 100- 

Fig. 9. Basin aggregated distribution of (a) maximum depth differences, (b) initial inundation timing differences, and (c) inundation duration differences averaged 
over the simulation period. Time series of basin-average (a) soil moisture and (b) surface water volume. The vertical dashed line indicates the mean value of 
all samples. 
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year rainfall). As for lower storm intensity, the differences between the 
two schemes enlarge, as rainfall rates are less likely to exceed the 
infiltration capacity, and soils are not saturated. Other environmental 
factors pertaining to different topography and physiography are also 
likely to interact and change the results. For instance, an increase in 
slope will leave less room for surface water to re-infiltrate, which ex
plains why re-infiltration compromises its importance in hillslope hy
drology (Corradini et al., 2002; Zhang et al., 2020). 

5. Conclusions 

This study focuses on the influence of the re-infiltration process for 
100-year and 500-year flood events, which has so far not been well- 
recognized by the hydrologic/hydraulic modeling community. The 
sensitivity experiment and a 500-year Hurricane Harvey example both 
highlight the discernible differences between the with and without re- 
infiltration scheme. The major conclusions are summarized as follows:  

1. In the 100-year design rainfall event, re-infiltration is found to make 
discernible differences with less flood extent (~1.56 km2), depth 
(~3 m), and dynamics (~4-h delayed flooding and ~4-h shorter 
inundation duration), compared to without re-infiltration. The dif
ferences are increasing with more frequent storms. The 500-year 
Hurricane Harvey event shows a magnified difference in inunda
tion duration up to 15 h because of the longer event duration. 
However, the flood depth difference is less in the Harvey event due to 
the rapid saturation of the soils.  

2. The hydraulic conductivity and antecedent soil condition from the 
designed sensitivity test are found to be the prime contributors to the 
difference between with and without re-infiltration, and compara
tively, the antecedent soil moisture condition is the most sensitive 
among the four tested factors.  

3. For the Harvey event, the differences are verified with stream gauge 
observations. On average, a 139.9% increase in NSE scores is found 
for re-infiltration with respect to without it. The improvements are 
mostly tied to better characterization of the recession limb after peak 
flow while the peak flows are well-captured by both. The proxy data 
– USGS High Water Marks – also indicate better performance with 
the inclusion of the re-infiltration scheme, as the re-infiltration 
scheme presents a 17.2% less flood depth difference than the case 
without the re-infiltration. The differences are further expected to 
enlarge for less intensive events and regions with a higher percentage 
of permeable soil media. 

This study aims to raise attention to the important re-infiltration 
process in coupled H&H flood modeling to provide more accurate 
flood information, e.g., depth and timings. For future work, we will 
continue improving the current CREST-iMAP model framework by 
incorporating flood mitigation measures such as levees and dams into 
the system. Also, it is critical to couple with the NWP model to advance 
flood prediction lead time, which ensures more time for residents at risk 
to evacuate. 

Software availability 

Software name: CREST-iMAP Version 1.1. 

Programing language: Python and C 

The main package is developed using the Python language version 
2.7. Some bottlenecks that are computationally expensive (e.g., hydro
logic component and mesh generator) are written and compiled in C 
language for efficiency. It has been tested both on Linux and MacOS 
operating systems. Both CREST-iMAP Version 1.0 (without re- 
infiltration) and 1.1 (with re-infiltration) can be accessed from the 
HydroShare: http://www.hydroshare.org/resource/50ce0d7d80b64 

2898f74d8bf56798565. 
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